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The permeability of a random array of fixed spheres has been calculated over the 
range of volume fractions from dilute to almost closest packing, by assuming 
pairwise-additive (low-Reynolds-number) hydrodynamic interactions within an effec- 
tive medium. Non-convergent pair interactions arising from the long-range decay 
of the Stokeslet were removed by renormalizing the Stokes equation to determine 
the permeability of the effective medium, i.e. to include the mean screening effect 
of the other spheres. Pair interactions in this Brinkman medium were calculated by 
the method of reflections in the far field and boundary collocation in the near field. 

The permeability predicted by the theory asymptotes correctly to established 
results for dilute arrays, and compares favourably (within 15%) with the Carman 
correlation for volume fractions between 0.3 and 0.5. The magnitude also falls within 
the range of exact results for periodic arrays at the higher concentrations, but our 
model does not reproduce the dependence on structure. 

Use of the Brinkman equation with an effective viscosity leads to an apparent slip 
velocity at the boundary of a porous medium. Our calculation of the bulk stress via 
volume averaging determines the effective viscosity and hence the slip coefficient 
unambiguously for dilute porous media. However, at concentrations corresponding 
to the available experimental results the lengthscale characterizing pressure or 
velocity gradients becomes comparable to the interparticle spacing, and the averaging 
technique fails. Indeed the Brinkman equation itself is no longer valid. 

1. Introduction 
In this work we have calculated the permeability and bulk stress for flow through 

a random array of fixed spheres over the entire range of concentrations by extending 
the dilute-limit theory of Hinch (1977) to account for multiparticle hydrodynamic 
interactions. Our approach treats interactions as pairwise-additive within an effective 
medium whose properties follow from the dilute theory. The effective medium 
rigorously incorporates the dominant, long-range many-body hydrodynamic inter- 
actions, as do self-consistent field theories. Consequently, the predictions for the 
permeability compare favourably with the experimental correlation of Carman (1937) 
in the range of concentrations relevant to real systems. In addition, the truncation 
at the pair, rather than the single-particle, level preserves the exact dilute limit to 
second order in the concentration. 

Problems involving multiparticle interactions cannot be solved exactly. Con- 
sequently a number of approximate techniques have emerged, among which the more 

t Present address : Department of Chemical Engineering and Mathematics Research Center, 
University of Wisconsin, Madison, WI 53706. 
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popular are cell models (reviewed by Happel & Brenner 1965), self-consistent-field 
models (Hashin 1964) and pairwise-additive interaction models (Glendinning & 
Russel 1982). We present here an alternative approach that is based on rigorous 
averaged equations developed by Hinch (1977) for dilute systems. Our modification 
closes the hierarchy of equations arising from the averaged-equation formalism by 
using an  effective medium a t  the two-particle fixed level. The method is shown first 
for the permeability problem and then applied to the bulk stress produced by a 
velocity gradient. 

Brinkman (1947) pioneered the modelling of porous media via fixed arrays, by 
equating the average drag per volume, (f) (x), to the product of drag per sphere and 
the number density n: 

The permeability k = a+ follows by definition from (1 .1)  since F is linear (Stokes 
flow) with respect to  the viscosity ,u and the average velocity ( v )  (x). The essence 
of Brinkman’s argument was that a test sphere a t  x, sees its surroundings as an 
effective medium of permeability k, with the governing equation obtained by adding 
a Darcy resistance term to the Stokes and continuity equations for incompressible 
viscous flow : 

(f) (x) = -Fn = paz(v) (x). (1.1) 

-Wp+pVV2v-pa2v = 0, W - v  = 0. (1.2) 

F =  6npa[l + a a + : ( a ~ ) ~ ]  ( v )  (xl). (1.3) 

The drag on the sphere follows from the solution of (1.2) as 

Finally, k for the effective medium was determined by the ad hoc self-consistent 
condition, which combines (1 . l )  and (1.3) to obtain 

(w)2 = +%)@a), (1.4) 

with Bo(z) = 1 +z++9 and the volume fraction given by c = +na3n. 
A rigorous justification of Brinkman’s analysis is possible for small c (Childress 

1972; Howells 1974; Hinch 1977; Freed & Muthukumar 1978; Muthukumar & Freed 
1979). The procedure is non-trivial beyond the isolated-sphere analysis, because the 
‘obvious’ method of adding the contribution of pair interactions F,(x, ; x,) to the drag 
on an isolated test sphere, i.e. 

P(X, I Xl) F,(x1; xz) dx:, (1.5) 

leads to non-convergent integrals since F, decays as I x, - x, 1-l. Even in the dilute 
limit, the two steps ( 1 . 1 )  and (1.3) cannot be decoupled, as shown by Hinch (1977), 
because of the strong far-field interactions. Far from the test particle a t  x,, the 
particle a t  x, acts as a point force. I n  a process Hinch defines as renormalization, 
such non-convergent far-field interaction terms can be incorporated into a new 
effective porous medium surrounding the test particle a t  x,. The Fourier-transform 
approach taken by Freed and Muthukumar (1978, 1979), in their ‘long-wavelength 
limit’, also yields (1.3) for small c. Their technique introduces an effective medium, 
but the connection between the two techniques is obscured by the different 
mathematical approaches. In  principle, their analysis can be extended to higher 
concentrations, but requires substantial complex algebra. 

The details of the renormalization and the calculations for the permeability are 
presented in $ 2 .  The results for the permeability are shown in $2.2. The techniques 
for solving the boundary-value problems that arise from the pair interactions are 

J; x*-x,12 ,a 
- F(xl) = - ~ x ~ u v ( x , )  + 
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presented in the companion paper (Kim & Russel 1985, hereinafter referred to as I). 
Our calculations for concentrated arrays require these complete results for pair 
interactions in a Brinkman medium rather than the asymptotic (small-c) expressions 
used in the dilute-limit theories. 

In $3 we present the parallel development for the bulk stress when the medium 
is subject to a velocity gradient Vu. The discussion is motivated by the popular use 
of the Brinkman equation in the modelling of porous medium-fluid interfaces (Adler 
& Mills 1979; Koplik, Levine & Zee 1983), where the ratio of the Brinkman viscosity 
and the solvent viscosity appears as a key parameter. Currently, the various theories 
for this ratio (Freed & Muthukumar 1979; Koplik et al. 1983) disagree. For 
~ / ( a a ) ~  9 1, i.e. dilute arrays, our technique yields the appropriate Brinkman 
viscosity from the bulk stress as a monotonically increasing function of c. However, 
at  higher concentrations the Brinkman approach cannot be justified rigorously 
because the velocity gradient cannot be maintained over a region that is sufficiently 
large compared with the particle size for the averaging procedure to be valid. 
Consequently, the boundary region between a porous material and a viscous fluid 
requires separate characterization, with the slip coefficient proposed by Beavers & 
Joseph (1967) being the simplest possibility. 

2. The permeability of the concentrated array 
In this section we review Hinch’s (1977) rigorous averaged-equation formalism and 

introduce our approximations to calculate the permeability of a fixed array a t  
arbitrary concentrations. At dilute concentrations our approximations become exact 
and our theory recovers the proper limit to O(cz). At  higher concentrations the 
connection between our theory and Brinkman’s ad hoc model of a single test sphere 
in an effective medium (i.e. a self-consistent-field model) appears in a natural way. 

In the first step of the averaged equation formalism, the Newtonian constitutive 
equation for the fluid stress u and the Stokes and continuity equations governing the 
pressure p and velocity u in an incompressible fluid are averaged over ensembles 
containing stationary particles. The resulting averaged equations have the same 
functional form, but with an extra term ~ ( x )  due to the particles: 

(a) (4 = - (P) (4 + 2P ( 8 )  

V-(u)+(f)  = 0, V*(U)  = 0. 

+ <s> (x), 

with the rate-of-strain tensor denoted by 8 and 

The external body force f acts on the spheres to keep them fixed. The generalized 
function ~ ( x )  vanishes in the fluid (where the constitutive equation for u is valid) and 
increments the fluid constitutive equation inside the particles to the correct value. 
Thus ( ~ ( x ) )  represents the particle contribution to the stress. 

If the solid’s constitutive equation is provided, the expression for s may be written 
immediately. But in this paper we model the particles as rigid bodies, so the particle 
stresses are indeterminate, requiring a different approach as discussed later in this 
section. 

For dilute systems the calculation proceeds through a hierarchy of conditionally 
averaged equations; the total contribution from the particles can be expressed in 
terms of the conditional average with one particle fixed, which in turn can be 
expressed in terms of a conditional average with two particles fixed, and so forth. 
The hierarchy is constructed so that an additional factor O(c) appears at each level, 
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i.e. in the relationship between the N-particle-fixed and (N+ 1 )-particle-fixed 
problems. 

For dilute systems a valid perturbation expansion can be constructed in principle 
by starting at the N-particle-fixed problem. Unfortunately, detailed solutions of the 
N-particle problem are limited to  N < 2. Not surprisingly, explicit examples in 
Hinch’s (1977) paper are limited to  the one-particle-fixed problems (which require 
knowledge of the two-particle solution as discussed below). In  comparison, our theory 
is essentially a ‘ two-particle self-consistent-field ’ approach. Consequently, we also 
start with the rigorous, conditionally averaged equation with one particle fixed, and 
introduce reasonable approximations to  account for the other particles. 

The conditionally averaged equation with a particle fixed at x, is 

- V p ( x ( x , ) + ~ V 2 U ( x I x 1 ) + ~ x ~ x 1 )  = -V-s(xlx,). 

For convenience we have dropped angular brackets from the field variables. For rigid 
particles the right-hand side must be manipulated (see Hinch (1977) for details and 
Kim (1983) for the case wherefis non-zero) into the following equivalent form, which 
requires knowledge of the stresses only a t  the particle surface : 

- W x  I x1) +P V 2 W  I x,) 

dx; P ( x ,  I x,) (j dx’ a(x’ I x,, x,) *n’S(x’ - x). (2.1) 
= Slx2-x,l za Ix2--x‘l = a  

The forcing in (2.1) represents the disturbance, over all allowed configurations of the 
second test sphere, from the stress distribution on the surface of the second sphere. 
This is an  exact expression since a@’ I xl, x2) is the exact conditionally averaged stress 
distribution with two spheres fixed (the arguments xl, x,, . . . after a vertical bar 
indicate that the field variables are conditionally averaged over all ensembles with 
particles a t  those points). Others (e.g. Howells 1974) have used this equation as the 
starting point without a formal derivation. The physical interpretation of (2.1) is that 
the conditionally averaged pressure and velocity fields with one particle fixed must 
satisfy the Stokes and continuity equation, but with apparent volume forces due to 
the other particles. The one-particle-fixed conditional average may be related to a 
two-particle conditional average (this is really the definition of conditional averaging). 
Equation (2.1) confirms the intuitive notion that the effect of the other particles may 
be related exactly to  the integral of a(xIx, ,x , ) .n over the surface of a test sphere 
at xz. We then integrate over all permissible x2 using the conditional probability 
P(x,  1 xl) that a second test sphere is indeed a t  x,. 

Now we digress briefly to  review Hinch’s results. In  the analysis of the dilute limit, 
non-convergent integrals appear in the solution of (2.1) if the two-sphere input on 
the right-hand side is approximated to  O( 1)  by taking a(x’ I x,, x,) as the stress field 
for two spheres in the pure solvent. Hinch (1977) showed that the convergence 
problem does not occur if the spheres are placed in an effective medium with 
properties accurate to O(c) .  The procedure, which Hinch calls renormalization, is 
accomplished mathematically by placing additional terms on the left-hand side of 
(2.1) so that  the homogeneous equation describes the effective medium. The equality 
is preserved by modifying the right-hand side with a distribution of singularities that 
are mathematically equal to  the new terms on the left-hand side. 

The elimination of the non-convergent integrals may be traced to  two distinct 
factors; ( I ) ,  the right-hand side of the renormalized problem decays more rapidly 
than in the original problem and, (2), the particle-particle interactions are weaker 
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in the effective medium. As discussed by Hinch (1977), the first factor alone ensures 
convergence in the bulk stress (Batchelor & Green 19723) and sedimentation 
(Batchelor 1972) problems, whereas the second factor plays the crucial role in the 
porous medium. The elegant aspect of Hinch’s theory becomes quite apparent in the 
computational process, where one finds that in all problems the distribution of 
singularities that  arises from the intuitive modification toward the effective medium 
are precisely those that cancel the divergent terms in the two-sphere solution. Stated 
in another way, the non-convergent terms in the far field were never there, but arose 
because the effective medium between two widely separated test spheres was 
erroneously approximated as the pure solvent. 

For concentrated arrays, such rigorous analysis is not feasible, but we shall take 
a similar approach and conjecture that the (unknown) conditionally averaged 
problem with two spheres fixed may be approximated by two spheres interacting 
through an effective medium. I n  the dilute theory, the single-particle solution is used 
to determine the effective-medium parameters. Here, motivated by the dilute 
analysis, we assume that the effective medium for the two-sphere problem can be 
determined from a convergence requirement in the far field. Thus (2.1) is renormalized 
as 

-Vp(x  1 x,) +pV2v(x I x,) -pEieu(x I XI) 

dxg { P(x,  I x,) f dS’ ~ ( x ’  I x,, x,)-n’S(x’-x) 
= L 3  2a xp-x’ I -a 

-pE2v(xz I x,) S(x-x,) - dxgpa2u(x,Ixl)S(x-x2), (2.2) > I  a < IXp-X*I  < 2a 

with the boundary conditions 

v(xIxl) = 0 a t  Ix--x,I =a, v(xIxl)+v(xl) as Ix-xlI-+oo. 

The new term on the left-hand side of (2.2) converts the solvent into a Brinkman 
medium with a permeability (as yet to be determined). The equivalent distribution 
of monopoles on the right-hand side has simply been written in terms of the Dirac 
delta function. 

The problem has thus been reduced to calculating the drag on a test sphere at x, 
governed by (2.2). As in the dilute case, the explicit calculation of the velocity field 
v(x I x,) itself can be avoided through use of the analogue for the Brinkman equation 
to Faxen’s (1922) law for the Stokes equation, which gives the drag on a test sphere 
of radius a centred at x, in the ambient field u(xl) as 6 n p ~ ( l + $ ~ V ~ ) ~ ~ ( x )  Ix=x,.  
Howells (1974) has shown that, for the Brinkman equation, the Stokesian factor 
6npa( 1 + $2 V2) should be replaced by 

~ ~ , w z { B ~ ( w )  + B , ( ~ u )  a’ V’}, (2.3) 

with 
ex-Bo(x) 

2 2  
BJx) = 1 +2+$x2, B,(X) = 

For the non-homogeneous equation (2.2), vm(x)  includes both the imposed velocity 
and the velocity field generated by the singularities. The latter is readily obtained 
by replacing the delta functions in (2.2) with the Green dyadic (derived by Howells 
1974) 9 ( x ;  E)/8np.  
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Thus the velocity 

9 ( x  - x, ; 01) 3(x-x2;01) -p012u(x2 I xl)* dx;pE2u(x, I xl)* . (2.4) 
8 v  8 w  

can be used to obtain the following expression for the drag on the test sphere a t  x1 : 

r 

(2.5) 

The functional form of the terms due to v ( x l )  and the distribution are in accordance 
with the above explanation. Although not as straightforward, the contribution from 
the surface distribution o(x’ I xlr x2) is precisely F,(x, ; x,; E ) ,  the difference between 
the two-particle and one-particle drags, since the Faxen law for the drug on sphere 1 
with another sphere a t  x, requires that sphere 2 be represented by precisely the 
surface distribution of singularities on the right-hand side of (2.2). 

I n  the far field the method of reflections determines the excess drag F,(x1;x2;Z) 
to leading order as 

This term, the contribution from the first reflection, decays as 1 xz-xl and must 
be cancelled by the corresponding component in the subtraction term. Therefore the 
permeability parameter for the effective medium must be 

v ( x , ) ’ ~ z ~ u B , ( ~ u )  [$B,(Eu)~(x-x , ;  E ) ] .  (2 .6)  

(Za)2 = $cB,(Za). (2.7) 

This resembles Brinkman’s closure scheme for a test sphere in an effective medium. 
However, in our approach the effective medium applies to both the two-particle-fixed 
problem and the inhomogeneous equation governing the one-particle-fixed problem. 
Thus this approach preserves the near-field interactions not considered by conventional 
self-consistent-field theories. F(x,),  the drag on the test sphere at x, as determined 
by (2.5), and local homogeneity determine the permeability as 

PLlk = P ( X l ) F ( X l ) .  (2.8) 

Readers familiar with Hinch’s (1977) paper may note that our (2.2) has fewer terms 
than his (8.2). The answer is found in the fact that  in the dilute-limit theory the 
renormalization is dictated solely by the far-field region. There, altering the near-field 
behaviour, for example with viscosity jumps, will change the relative contributions 
from various physical effects and the remainder integral, without changing the final 
result. Thus the extra terms in Hinch’s (8.2) reduce the contribution from the 
remainder integral or, equivalently, the far-field interactions. A thorough analysis 
of the change in the relative contributions from the near-field and remainder terms 
as the near field is modified is presented in Kim (1983). 

At higher concentrations the modification of the near-field medium (left-hand side 
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of (2 .2) )  the distributions of singularities on the right-hand side are not necessarily 
equivalent. Furthermore, 'jumps' in the effective-medium parameters, as used in 
the dilute-limit theories, are no longer tractable mathematically. We extend the 
effective medium into the surface of the spheres and thereby eliminate the additional 
terms. 

An alternative rearrangement is presented in Kim (1983). In an attempt to reduce 
the contribution from the remainder integral, i.e. to include a better approximation 
of the far field, a distribution of degenerate quadrupoles was placed on the right-hand 
side of (2 .2) .  In  the dilute theory, the associated viscosity modification 

,ii = p[1+9B2(Za)]- '  - p ( 1 - 9 )  as Z-tO 

exactly compensates the modification of the far-field contribution. However, at  
higher concentrations, j i /p 4 1 leads to substantial underestimation of the stress in 
the near field, and consequently an unrealistically low prediction for the drag. In  fact, 
a t  separations of less than a diameter other spheres are excluded from the gap, and 
the pair interact much as if in the pure solvent, rather than the effective medium. 
We conclude that (2 .2)  is the best renormalization with constant effective parameters, 
i.e. the best compromise between the constraints imposed by the near-field and far-field 
interactions. 

2.1.  Asymptotic and numerical calculations for the drag 
We can now calculate the permeability. At a given concentration (2 .7)  determines 
the renormalization. The symmetry of the two-sphere geometry permits the terms 
in the integrand of (2 .5)  to be expressed in terms of uniform streams parallel and 
perpendicular to the sphere-sphere axis R. For example, 

4(x1;x2;01) = ~ ~ ~ U V ( X , ) * [ X ~ ( R ; Z ) R R +  YF(R;Z) (a-RR)] .  (2.9) 

For convenience, we will define G as the subtraction terms, and write a similar 
decomposition 

G ( x ~ ; x ~ ; % )  = ~ ~ c ~ o v ( x ~ ) " X G ( R ; Z ) R R +  YG(R;Z) (a-RR)] .  

Equation (2.5) then becomes 

F = 61tpaB,(&Z) u(x,) 

- l x z - x l l  > 2a 

+I a < I xI-xI I < 2a 

dxi (P(x2 I XI) F , ( x ~ ;  ~ 2 ;  Z)--(X~) G(x1; ~ 2 ;  01)) 

dx: P(xl) G(xl ; x, ; 01) 

= 67tpaB,(&Z) D ( x ~ )  

rm 

(2 .10)  

Since the integrals converge, the angular integrations that were performed in arriving 
at (2.10) are rigorously justified. 
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There are no known analytic solutions to  the Brinkman equation for the drag on 
two interacting spheres, since separation of variables fails for the Helmholtz equation 
in bispherical coordinates. However, if the two spheres are far apart, i.e. R / a  & 1,  
accurate results can be obtained by the method of reflections, as shown in I. The 
integral in (2.10) can therefore be evaluated analytically in the far field. 

I n  the near field the contributions from the algebraically complex higher reflections 
are no longer negligible, necessitating a numerical approach. Fortunately, the 
boundary collocation technique, which was developed by Gluckman, Pfeffer t 
Weinbaum (1971) for hydrodynamic interaction between spheres in Stokes flow, can 
be readily modified for the Brinkman equation. Details of the numerical procedure 
may be found in I. At R = 5a the values for X , ( R ; a )  and Y,(R;a) obtained from 
the method of reflections (4 reflections) and the collocation technique (12 points) 
agreed to five significant figures over the range of interest for a. 

2.2. Results for the permeability 

The permeability predicted by our model is examined in this subsection. In  order to 
facilitate comparison with other work, we will present the result in terms of F(xl) ,  
the drag on the test sphere at xl, which is related to the permeability through 

p / k  = ml) F(x1). (2.11) 

Figure 1 compares our predictions of F(xl)  with that predicted by Hinch's 
dilute-limit expansion and the Carman (1937) correlation. At small c, where the 
permeability can be calculated analytically, our approach recovers Hinch's results. 
We will show the procedure to exhibit the contributions from the various terms. For 
c << 1, (2.7) for ol becomes 

Eu = &ci + ic  + . . . or pE2 = 61cpaP(x1) + . . . . (2.12) 

Equation (2.5) can be rearranged by separating the contribution from the third 
reflection, a valid procedure because this contribution is convergent when inverted 
with the Brinkman operator. The result is 

F = 67cpuB0 u(x,) 

+ l x z - x , / 2 z a  

+ P(xl) ($B0)3 67tpaBo U ( X , ) * ~ ~ )  

dxi { - P(x, 1 x,) F, + 67tpaP(xl) U ( X ,  1 ~ ~ ) * $ a ( B o +  B, u'V:)' 9 

dxi 67cpaB0 P ( x l )  U(X, 1 x,) * (B,  + B, a":) $9 

n 

dxi 6npaP(x1) u(x, 1 x,) *$(Bo + B, u2 V:) B, a2 V: 9 
- J I x , - x , l ~  2a 

dxt P(x,)  67tpaB0 u ( x , ) * ~ ~ .  

At small c,  67cpaB, u(xl)  from the homogeneous solution becomes 

(2.13) 

67cpau(xl)[l+&c~+!fc+ . . . I .  
The distribution of monopoles in the excluded volume (second integral in (2.13)) 
contributes 

% 
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FIGURE 1. Comparison of the drag on a test sphere in a porous medium as a function of concentration 
c :  -, dilute theory; ---- , Carman correlation; -.-.-, equation (2.10). 

the distribution of quadrupoles in I x2-x1 I 2 2a (the Vi term in the third integral 
in (2.13)) 

and the third reflection, 

- i% - *Ci? 

w logc+ 1 1 . 9 8 7 c + 3 &  logc+63.231d. 

The higher-order terms (underlined) prove useful later in estimating the region of 

l+&c:+w logc+ 16.456c, (2.14) 

which is the result obtained by Howells (1974) and Hinch (1977) . t  The remaining 
terms converge even if inverted with the Stokes operator. Under these circumstances, 
the leading-order result with the Brinkman operator coincides with the result 
obtained from the Stokes operator. Therefore the remainder integral asymptotes to 
Hinch's remainder integral. 

As shown in tables 1 (a,  b), the higher-order contributions from the third reflection 
and quadrupole distribution are significant. They are less than one-tenth of the 
leading-order term only for extremely small values of c (4.5 x for the third 
reflection and 1.26 x for the quadrupole distribution). The result is a slowly 
converging series, with a limited domain of applicability for any truncation. 

We now return to the comparison between our theory and the Carman correlation. 
A t  these higher concentrations, the contribution from the homogeneous solution 

t There are computational errors in Hinch's (1977) calculation of the contributions from his 
surface distribution of monopoles and dipoles. On page 718 the factors of -(171/1024)c and 
(125/2O48) c should be (27/512) c and - (125/512) c respectively. We note that these corrections 
eliminate the discrepancy between his work and Howells (1974) that was mentioned at the end of 
his paper. 

validity of the dilute limit expansion. The leading terms sum to 
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Homogeneous solution 
Monopole in excluded in excluded 

Integral of the third reflection 
Integral of the quadrupole 

Remainder integral 
Integral of the subtraction 

Method of reflection (5, m )  

volume 

distribution 

term in (2.5) 

Homogeneous solution 
Monopole in excluded volume 
Integral of the third reflection 
Integral of the quadrupole 

Remainder integral 
Integral of the subtraction 

Method of reflection (5, co) 

distribution 

term in (2.5) 

(a) 

Numerical 

1.07103 
1.505 x 

-4.903 x 
-7.340 x 

- 1.819 X lo-' 
2.672 x lo-' 

7.1 14 x 

( b )  

Numerical 

1.256 65 
1.764 x lo-' 

-2.247 x lo-' 
-8.847 x 

-0.1432 
0.2138 

4.256 x 

Analytical expansion 

one-term two-term 

1.07083 - 

- i ,391 x 10-3 

-2.584 x -4.494 x 10-3 
-6.719 x 10-4 -7.316 x 

Analytical expansion 

one-term 

1.24963 
1.391 x 

-6.719 x 
-2.273 x lo-' 

- 

- 

- 

two-term 
- 
- 

-3.534 x 10-2 
-8.608 x 

- 

- 

- 

TABLE 1. Contributions of the terms in (2.13) a t  (a) e = 0.001 and (b) e = 0.01 

C Homogeneous term Total 

0.05 1.76 1.99 
0.10 2.40 2.60 
0.15 3.18 3.48 
0.20 4.21 4.61 
0.25 5.62 6.08 

0.30 7.67 8.11 
0.35 10.78 11.05 
0.40 15.86 15.65 
0.45 24.95 23.54 
0.50 43.63 39.04 
i m 00 

TABLE 2. The contribution from the homogeneous solution 

dominates those from the right-hand-side forcing, as shown in table 2. Since the 
former corresponds to Brinkman's self-consistent-field result, we essentially recover 
his successful comparison with the Carman correlation. The fact that  the error term 
(the right-hand-side forcing) makes only a small contribution confirms the validity 
of replacing the spheresphere interactions with a self-consistent medium. This also 
implies that our model will exhibit a weak dependence on structure. 
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Random 
C array 

0.25 6.08 
0.30 8.11 
0.35 1 1.05 
0.40 15.65 
0.45 23.54 
0.50 39.04 

Periodic arrays 

sc BCC 

8.91 9.31 
11.8 12.4 
15.9 16.9 
20.8 22.7 
28.1 31.7 
36.5 43.6 

FCC 

12.6 
17.3 
23.5 
33.5 
47.5 

9.37 

TABLE 3. A comparison of the drag on a test sphere (scaled by Stokes coefficient) in the random 
array and periodic arrays (values from graph of Zick & Homsy 1982) 

Comparison of our result for random arrays with the results obtained by Zick & 
Homsy (1982) for periodic arrays (table 3) illustrate this last point. In the dilute limit 
the drag exhibits different concentration dependence in the two systems: ci for 
random arrays and d for periodic arrays. As discussed by Saffman (1973), this 
difference is due to the existence of the lengthscale associated with the unit cell in 
the periodic system. However, at higher concentrations, one might expect qualitatively 
similar results, since the lengthscale becomes O(a) in both cases. The results in table 3 
support this expectation, but also demonstrate the striking difference between the 
various types of packings for the periodic arrays. 

Our model random array yields no analogous effect, because the term that depends 
on structure, i.e. the term that contains the pair-correlation function 

in (2.10), makes only a small contribution. We suspect that the introduction of 
structure in the one-particle-fixed medium through a variable permeability reflecting 
the short-range structure would improve the present model, but at the cost of much 
greater mathematical complexity. Thus we attribute the effect of structure to 
short-range correlations rather than the difference in the far field between random 
and periodic arrays. 

3. The bulk stress at porous-medium-fluid boundaries 
A survey of recent literature shows that the Brinkman equation is also used as a 

generalization of Darcy’s law which allows the matching of velocities and tractions 
at the boundary between fluid and porous media. Examples are Adler & Mills’ (1979) 
model for floc rupture and the analysis of shear flow at the porous-media-fluid 
boundary by Koptik et al. (1983). 

The motivation becomes apparent when one considers the boundary conditions at 
the interface between a fluid region and a porous medium governed by Darcy’s law. 
Since the governing equations in the two regions are not of the same order, one cannot 
match all components of the velocity. In particular, the tangential component must 
be discontinuous ; indeed experimental measurements of the apparent slip velocity, 
the difference between the velocity in the adjacent fluid region and the superficial 
velocity deep inside the Darcy medium, are available (Beavers & Joseph 1967). 

Modelling the porous medium by the Brinkman equation avoids difficulties by 
retaining the second-order viscous-stress terms. However, the question of the proper 
viscosity for the Brinkman medium then arises, for, unlike the Darcy equation, the 
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viscosity appears as a parameter independent of the permeability. Brinkman (1947) 
recognized this problem, and suggested the possible use of Einstein’s (1906) expression, 
but also provided ad hoe momentum-transfer arguments favouring the use of the pure- 
solvent viscosity. It has been recognized (Kim 1983; Koplik et al. 1983) that if one 
assumes that the V2v term in the Brinkman equation has a coefficient differing from 
that in the Stokes equation (i.e. the effective viscosity of the Brinkman medium 
differs from that of the pure solvent) then the ‘viscosity ratio’ can be correlated to 
the slip parameter of Beavers & Joseph (1967), as illustrated in $3.1. 

3.1. A model problem 
I n  this subsection we review a model problem corresponding to  several experimental 
studies, and compare the results from the Darcy and Brinkman analyses. Beavers 
& Joseph (1967) have conducted experimental studies of Poiseuille flow in a channel 
with a permeable boundary. The geometry, as shown in figure 2, consists of an 
impermeable upper wall a t  y = h and a nominal boundary between the fluid and 
porous medium a t  y = 0. 

Beavers & Joseph described the motion in the channel by the Stokes equation and 
that in the porous medium by Darcy’s law : 

dp (y > 0, channel), 
d2v 
dy2 ,u dx 
-- 

k dP 
P dx 

V = -- - (y c 0, porous medium), 

with no slip at y = h and a slip boundary condition a t  y = 0: 

dv A 
dy k: 
_ -  - - (us- V ) .  

(3.1 a )  

(3.1b) 

The dimensionless slip parameter A should depend only on the properties of the porous 
medium. 

The fractional increase in mass-flow rate through the channel relative to  that with 
impermeable walls was measured and compared with the expression that follows from 
the solution of the velocity field as 

3(a + 2A) 
a( 1 + A a )  

@ =  (3.3) 

with v = h/k:. Using A as an empirical parameter, they successfully correlated their 
experimental data. 

Application of the model with the Brinkman equation in the porous medium 
eliminates the slip condition a t  y = 0. The velocity fields in the two regions are now 
governed by 

- d2v 
dy2 p dx 

dp (y > 0, channel), 

__-- d2V - dp (y c 0,porous medium), 
dy2 E - - F d z  

(3.4a) 

(3.4b) 

with the boundary conditions 
v = O  a t y = h ,  
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FIGURE 2. Flow geometry in the experiments of Beavers & Joseph (1967). 

The resulting velocity profile determines the excess mass-flow rate as 

3(a + 2) P/P 
d a  + P / P l  . (3.5) 

with a = h / B .  We relate &to k,, the permeability based on the solvent viscosity used 
by Beavers & Joseph (1967)' by 

so that (3.5) becomes 

- P -lu _ -  
k, k' 

which is identical with (3.3) with A = (P/p)k Thus the two approaches, the Darcy 
equation with a slip condition or the Brinkman equation, lead to similar end results. 
We now turn our attention to the calculation of the viscosity ratio in the Brinkman 
approach. 

3.2. The bulk stress in the $xed array 
Recognition that the Brinkman viscosity and the solvent viscosity may differ and 
could be related to the slip coefficient has led to a number of attempts to derive an 
analogue to Einstein's expression for the effective viscosity. The effective-medium 
theory of Freed & Muthukumar (1978) predicts the effective viscosity for dilute arrays 
as 

5 9d 
- 
!!= 
P 2 2 4 2 '  (3.7) 

which exceeds that for the pure solvent, but is less than the Einstein result. Koplik 
et al. (1983) calculated the energy dissipation in an extensional flow about an isolated 
stationary sphere to determine the effective viscosity as 
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a value less than that for the pure solvent. In  the following, we derive the Brinkman 
viscosity through a rigorous calculation of the bulk stress to settle the disagreement. 

The advantage of determining the bulk stress rather than the energy dissipation 
has been discussed extensively for force-free suspensions, most notably in Landau 
& Lifshitz (1959) and Batchelor ( 1970). The energy-dissipation approach is particularly 
ambiguous for fixed arrays, since i t  is not obvious how to distinguish the energy 
dissipation due to the bulk straining from that due to  the frictional drag. 

First, we note some limitations on our rigorous approach. The volume averaging 
performed in the previous sections requires that the macroscale, on which velocity 
and pressure gradients vary, greatly exceed the microscale. Only then can a 
representative averaging volume with intermediate dimension 1 contain many 
particles, i.e. nP + 1. A linear shear flow persists in a porous material only near a 
boundary or in the presence of a quadratically varying pressure field, either of which 
can invalidate the volume averaging (as pointed out by E. J. Hinch). 

To demonstrate the consequences consider a homogeneous material with a uniform 
velocity gradient Vv sustained by the pressure field p = -,ua2x-Vv*x. For pressure 
variations to  remain insignificant within the representative volume, i.e. small relative 
to the viscous stresses, 

This means that n d  4 I 4 a-l, which is possible only for d/aa  %- 1. This is possible 
only a t  dilute concentrations where aa is O(c4). Analysis of flow near a boundary leads 
to the same conclusion. 

The consequences are significant : 
(1) the Brinkman equation itself is valid only for dilute porous media; 
(2) for non-dilute systems ( ( ~ / a a ) ~  < O(1)) Darcy’s law prevails in the bulk with 

a modified boundary condition necessary to account for gradients near a boundary 
(e.g. Saffman 1971 ; Ross 1983). 
Detailed analyses of the region near a boundary, as yet unavailable, should provide 
a slip coefficient, characteristic of the porous material, coupling the interior Darcy 
flow to the Stokes flow in an adjacent fluid, as proposed by Saffman (1971). 

We therefore calculate the bulk stress of a dilute porous medium satisfying ( 0 ~ 1 ) ~  4 c 
by determining the dipoles induced by a local velocity gradient VU(X,). Following 
Batchelor (1970), the contribution of the rigid particle to the stress, sp), is 
determined by applying the divergence theorem to a volume average of the stress 
field : 

(3.9) 

with V*o  = -f The second term in (3.9) would not be present for force-free particles. 
The force distribution f has the zeroth moment Pxt, which keeps the particles fixed, 
and (for rigid particles) an indeterminate dipole moment. However, only the surface 
moment in (3.9) is significant physically, since only that term interacts with the 
velocity gradient. Thus the problem becomes that of computing the stress dipoles, 

1 
[ ( u - n ) x + x ( o * n ) ]  dA and T = Is, [ ( o - n ) x - x ( u * n ) ]  dA, 

= 5 Is, 
with the velocity gradient decomposed into rate-of-strain E and vorticity G? fields. 
We shall consider the rate-of-strain case first. 
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The isolated-particle case is straightforward, and, as in the permeability problem, 
will appear as the homogeneous solution in the pair-interaction problem. With the 
two spheres in the pure solvent, the pair-interaction contribution to the dipoles, 
S2(x1;x2), decays as R-l. This differs from the R-3 result for force-free suspensions 
(Batchelor & Green 1972~) .  In the fixed array the sphere at x, produces a monopole 
field, so that the excess stresslet S, decays as 

S2(x1 ; x,; e) = ?$npa3{@e* (x2-xl)} -$[VS(x-x,)  + V ~ ( X + X , ) ~ ] .  (3.10) 

The fact that this non-convergent interaction cannot be renormalized with a bulk 
stress correction, i.e. a viscosity change, indicates a fundamental difference between 
fixed arrays and force-free suspensions. The far-field behaviour exhibited in (3.10) 
suggests the Brinkman renormalization (2.2), with (a), = +Bo(Za) as before. 

The details of the velocity field may be bypassed by using the appropriate Faxen 
law. The Brinkman stresslet is obtained by applying 9rp3 {C,(m) + C,(m) a2V2} to 
the ambient rate-of-strain field and the rate-of-strain field forced by the right- 
hand-side singularities in (2.2), with 

1+x+%2+kx3 and Cz(z) = ez- (1 +x) C&) 
l + x  (1+x)x2 

The stresslet from the renormalized problem is 
L 

+,uz~o(x, I x,) +'(C, + C, a2V2) ( V S +  VST)  Ix-xI 

dxipZ2~(x, I  x1)&u3(CO+C,a2V2) ( V S + V S T )  Jx-xl. (3.11) 

The far-field behaviour of S, is determined by the method of reflections as 
ynpa3{C0(m) + C,(m) a8 V2} operating on the rate-of-strain fields of the first, second 
and third reflection velocities from sphere 2. The leading-order terms in these 
velocities are monopoles and dipoles : 

+Ja<lxI-xll<2a 

- f a  (B, + B, a2 V2) (e. (x, - x,)) -S(x - xz) + $3(C0 + C, u2 Vz) e : V S ( x  - x,), 

(2nd reflection) -$(B,+B,a2V2)$3(C,+C,a2 V2) e :VS(x , -x , )*S(x -x , )  

(3rd reflection) + ( - $B,)* e* (x, - x,) -9 P S ( x  - x,). (3.12) 

The underlined terms are cancelled by the subtraction terms, leaving a convergent 
integral in (3.11). 

The axisymmetry about the sphere-sphere axis R allows us to write the linear 
relation between the stresslet and the ambient rate-of-strain in terms of three scalar 
functions (Brenner 1972) : 

st, = t X S ( R 1  R$-$$ j )  (Rk Rl-$kl) ekl(X1) 

+tYS(R$'jl Rk+Rj'tl Rk+ Rt'jk Rl+Rj'tk R l - 4 R t  R j  Rk R l ) e k l ( x l )  

+!@S('tk ' j l +  ' j k  'dl - ' 6 ,  'kl + R$ R j  ' k l +  'tj Rk Rl 

- Rt ' j l  R k -  ' j  ' $ 1  R k -  Rt ' j k  R l -  R j  'ik Rl + Rt Rj  Rk R l )  ek l (X1)-  (3.13) 

Equation (3.13) is a rearrangement of the K ,  L and M decomposition of Batchelor 
& Green (1972~).  We define our X, Y and 2 functions so that they correspond to the 
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following canonical flows : axisymmetric extensional flow, hyperbolic straining in a 
plane containing the sphere-sphere axis and hyperbolic straining in the plane 
perpendicular to the sphere-sphere axis (respectively). We substitute this decom- 
position into (3.1 1) and, after angular integration, obtain 

s = ~ n p a 3 ~ , , ( a a )  e(x,) + J; dx: {P(x2 I XI)  -P(X,)} S2(X, ; x,; a) 
x*-x* I 2 2a 

(3.14) 

The last two integrals are dimensionless, with R scaled by a. The subscript S denotes 
the stresslet and the subscript G again denotes the subtraction term. 

The collocation solution for X ,  Y and 2 and other details of the numerical work 
are discussed in I. As in the permeability problem, the method of reflections was used 
when the two results agreed to at least five significant figures. For small c, (3.14) 
reduces to 

2p[1++ + (8 logc+ 21.041) c2+ O(c! log c)] e(xl) 

+ p(x,) dxi {P(x2 1 xl) s2(x1; x2) -5pcE1(x1; x2) 
R 2 2a 

- 5 p d W  (x2 -x1)1'92.w2 9(x2 --%I + v2 f(x2 -XJT1l - [P(x1)]-l2p {@ + (8 log c + 19.66) c2 + 6.59ct log c} e(xl). (3.15) 

E1(xl ; x2) is the rate of strain at  x, due to the disturbance field of sphere 2. As in 
the permeability problem, the logc factors originate for the third reflection. 

We now determine the relation between the stress dipole T and the vorticity field 
S2(xl). The procedure for T is quite similar, and the details will not be repeated. As 
before, the velocity field may be bypassed by using a Faxen law for T.  This time we 
"PPlY 

4npa3 eaa 
1 +aa 

- 

to the ambient vorticity S2(xl) and the vorticity field driven by the right-hand-side 
singularities in (2.2). For small c the linear relation between T and S2 reduces to 

T = -4npa3(1+& logc)S2(xl). (3.16) 

The bulk stress follows from (3.15) and (3.16) as 

-p6+ 2pc {X+ (# log c + 19.66) c + 6.598 log c} e(xl) - 3pc( 1 + & log c) a(x,). 

Therefore our analysis predicts that the Brinkman viscosity is greater than the 
solvent viscosity. The coefficient for the rate-of-strain term agrees to O(c) with that 
of Freed & Muthukumar (1978) and, consequently, not with Koplik et al. (1983). 

The discussion of $3.1 implies that the slip parameter should satisfy h > 1. Table 4 
summarizes the experimental results of Beavers & Joseph (1967), most of which 
yield h < 1. However, c(k/a2)f 6 1 for all cases, so that the large velocity gradients 
near the boundary invalidate the averaging used in our continuum approach. Thus 
there are as yet no experiments at conditions for which the theory is valid and no 
theory relevant to the existing experiments. 
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System h kla2 c c( k/a2)g 

A 0.78 0.23 0.21 0.023 
B 1.45 0.21 0.22 0.021 
C 4.00 0.25 0.20 0.025 
Aloxite 0.1 0.024 0.44 0.0016 
Aloxite 0.1 0.014 0.49 0.0008 

TABLE 4. Comparison of the slip parameter h (experiment of Beavers & Joseph 1967) 

4. Conclusions 
The effective permeability of an array of fixed spheres has been determined over 

concentrations ranging from dilute to almost closest packing by adapting rigorous 
techniques for renormalizing non-convergent interactions in dilute systems. The 
extension into higher concentrations has introduced a natural connection with the 
self-consistent-field approach. We have shown that the self-consistent component 
dominates, thereby both recovering and explaining Brinkman’s (1947) successful 
comparison with the Carman correlation at the higher concentrations. 

In the porous-medium-fluid boundary problem we have shown that the Brinkman 
approach is invalid for dense arrays. Unless ~/(aa)~ % 1, the large gradients on the 
microscale invalidate the averaging. Nield (1983) has reached the same conclusion 
for the boundary conditions in the Rayleigh-Darcy convection problem. For dilute 
arrays we conclude that the bulk stress depends on both rate-of-strain and vorticity 
fields, with the Brinkman viscosity in the rate-of-strain problem agreeing to O(c)  with 
the work of Freed & Muthukumar (1977). Finally, we note that there are as yet no 
experiments at conditions for which the theory is valid and no predictive theory 
relevant to the existing experiments. 

This material is based upon work supported by the National Science Foundation 
under grant CPE-8116339 to W. B. R. Additional funding was provided by the 
Westvaco Corporation and the George Van Ness Lothrop Fellowship to S. K. from the 
School of Engineering, Princeton University. 
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